249 research outputs found

    Gamma-rays from dark matter annihilations strongly constrain the substructure in halos

    Full text link
    Recently, it has been shown that electrons and positrons from dark matter (DM) annihilations provide an excellent fit to the Fermi, PAMELA, and HESS data. Using this DM model, which requires an enhancement of the annihilation cross section over its standard value to match the observations, we show that it immediately implies an observable level of gamma-ray emission for the Fermi telescope from nearby galaxy clusters such as Virgo and Fornax. We show that this DM model implies a peculiar feature from final state radiation that is a distinctive signature of DM. Using the EGRET upper limit on the gamma-ray emission from Virgo, we constrain the minimum mass of substructures within DM halos to be > 5x10^-3 M_sun -- about four orders of magnitudes larger than the expectation for cold dark matter. This limits the cutoff scale in the linear matter power spectrum to k < 35/kpc which can be explained by e.g., warm dark matter. Very near future Fermi observations will strongly constrain the minimum mass to be > 10^3 M_sun: if the true substructure cutoff is much smaller than this, the DM interpretation of the Fermi/PAMELA/HESS data must be wrong. To address the problem of astrophysical foregrounds, we performed high-resolution, cosmological simulations of galaxy clusters that include realistic cosmic ray (CR) physics. We compute the dominating gamma-ray emission signal resulting from hadronic CR interactions and find that it follows a universal spectrum and spatial distribution. If we neglect the anomalous enhancement factor and assume standard values for the cross section and minimum subhalo mass, the same model of DM predicts comparable levels of the gamma-ray emission from DM annihilations and CR interactions. This suggests that spectral subtraction techniques could be applied to detect the annihilation signal.Comment: 5 pages, 2 figures (published version; minor corrections to figures and result, equation added

    Probing Turbulence in the Coma Galaxy Cluster

    Full text link
    Spatially-resolved gas pressure maps of the Coma galaxy cluster are obtained from a mosaic of XMM-Newton observations in the scale range between a resolution of 20 kpc and an extent of 2.8 Mpc. A Fourier analysis of the data reveals the presence of a scale-invariant pressure fluctuation spectrum in the range between 40 and 90 kpc and is found to be well described by a projected Kolmogorov/Oboukhov-type turbulence spectrum. Deprojection and integration of the spectrum yields the lower limit of ∼10\sim 10 percent of the total intracluster medium pressure in turbulent form. The results also provide observational constraints on the viscosity of the gas.Comment: 12 pages, 13 figures (low resolution), version accepted by Astron. Astrophy

    The Chameleonic Contribution to the SZ Radial Profile of the Coma Cluster

    Full text link
    We constrain the chameleonic Sunyaev--Zel'dovich (CSZ) effect in the Coma cluster from measurements of the Coma radial profile presented in the WMAP 7-year results. The CSZ effect arises from the interaction of a scalar (or pseudoscalar) particle with the cosmic microwave background in the magnetic field of galaxy clusters. We combine this radial profile data with SZ measurements towards the centre of the Coma cluster in different frequency bands, to find Delta T_{SZ,RJ}(0)=-400+/-40 microKelvin and Delta T_{CSZ}^{204 GHz}(0)=-20+/-15 microKelvin (68% CL) for the thermal SZ and CSZ effects in the cluster respectively. The central value leads to an estimate of the photon to scalar (or pseudoscalar) coupling strength of g = (5.2 - 23.8) x 10^{-10} GeV^{-1}, while the 95% confidence bound is estimated to be g < (8.7 - 39.4) x 10^{-10} GeV^{-1}.Comment: 13 pages, 3 figure

    Calibration of the Mass-Temperature Relation for Clusters of Galaxies Using Weak Gravitational Lensing

    Full text link
    The main uncertainty in current determinations of the power spectrum normalization, sigma_8, from abundances of X-ray luminous galaxy clusters arises from the calibration of the mass-temperature relation. We use our weak lensing mass determinations of 30 clusters from the hitherto largest sample of clusters with lensing masses, combined with X-ray temperature data from the literature, to calibrate the normalization of this relation at a temperature of 8 keV, M_{500c,8 keV}=(8.7 +/- 1.6) h^{-1} 10^{14} M_sun. This normalization is consistent with previous lensing-based results based on smaller cluster samples, and with some predictions from numerical simulations, but higher than most normalizations based on X-ray derived cluster masses. Assuming the theoretically expected slope alpha=3/2 of the mass-temperature relation, we derive sigma_8 = 0.88 +/-0.09 for a spatially-flat LambdaCDM universe with Omega_m = 0.3. The main systematic errors on the lensing masses result from extrapolating the cluster masses beyond the field-of-view used for the gravitational lensing measurements, and from the separation of cluster/background galaxies, contributing each with a scatter of 20%. Taking this into account, there is still significant intrinsic scatter in the mass-temperature relation indicating that this relation may not be very tight, at least at the high mass end. Furthermore, we find that dynamically relaxed clusters are 75 +/-40% hotter than non-relaxed clusters.Comment: 8 pages, 4 figures, revised version submitted to Ap

    The X-ray luminosity function of galaxies in the Coma cluster

    Full text link
    The XMM-Newton survey of the Coma cluster of galaxies covers an area of 1.86 square degrees with a mosaic of 16 pointings and has a total useful integration time of 400 ksec. Detected X-ray sources with extent less than 10" were correlated with cataloged galaxies in the Coma cluster region. The redshift information, which is abundant in this region of the sky, allowed us to separate cluster members from background and foreground galaxies. For the background sources, we recover a typical LogN-LogS in the flux range 1.e-15 - 1.e-13 ergs/s/cm^2 in the 0.5-2.0 keV band. The X-ray emission from the cluster galaxies exhibits X-ray colors typical of thermal emission. The luminosities of Coma galaxies lie in the 1.e39-1.e41 ergs/s interval in the 0.5-2.0 keV band. The luminosity function of Coma galaxies reveals that their X-ray activity is suppressed with respect to the field by a factor of 5.6, indicating a lower level of X-ray emission for a given stellar mass.Comment: 16 pages, 2004 A&A in pres

    A Puzzling Merger in A3266: the Hydrodynamic Picture from XMM-Newton

    Full text link
    Using the mosaic of nine XMM-Newton observations, we study the hydrodynamic state of the merging cluster of galaxies Abell 3266. The high quality of the spectroscopic data and large field of view of XMM-Netwon allow us to determine the thermodynamic conditions of the intracluster medium on scales of order of 50 kpc. A high quality entropy map reveals the presence of an extended region of low entropy gas, running from the primary cluster core toward the northeast along the nominal merger axis. The mass of the low entropy gas amounts to approximately 2e13 solar masses, which is comparable to the baryonic mass of the core of a rich cluster. We test the possibility that the origin of the observed low entropy gas is either related to the disruption a preexisting cooling core in Abell 3266 or to the stripping of gas from an infalling subcluster companion. We find that both the radial pressure and entropy profiles as well as the iron abundance of Abell 3266 do not resemble those in other known cooling core clusters (Abell 478). Thus we conclude that the low entropy region is subcluster gas in the process of being stripped off from its dark matter halo. In this scenario the subcluster would be falling onto the core of A3266 from the foreground. This would also help interpret the observed high velocity dispersion of the galaxies in the cluster center, provided that the mass of the subcluster is at most a tenth of the mass of the main cluster.Comment: 6 pages, ApJ sub

    The North Ecliptic Pole Supercluster

    Get PDF
    We have used the ROSAT All-Sky Survey to detect a known supercluster at z=0.087 in the North Ecliptic Pole region. The X-ray data greatly improve our understanding of this supercluster's characteristics, approximately doubling our knowledge of the structure's spatial extent and tripling the cluster/group membership compared to the optical discovery data. The supercluster is a rich structure consisting of at least 21 galaxy clusters and groups, 12 AGN, 61 IRAS galaxies, and various other objects. A majority of these components were discovered with the X-ray data, but the supercluster is also robustly detected in optical, IR, and UV wavebands. Extending 129 x 102 x 67 (1/h50 Mpc)^3, the North Ecliptic Pole Supercluster has a flattened shape oriented nearly edge-on to our line-of-sight. Owing to the softness of the ROSAT X-ray passband and the deep exposure over a large solid angle, we have detected for the first time a significant population of X-ray emitting galaxy groups in a supercluster. These results demonstrate the effectiveness of X-ray observations with contiguous coverage for studying structure in the Universe.Comment: Accepted for publication in The Astrophysical Journal; 5 pages with 2 embedded figures; uses emulateapj.sty; For associated animations, see http://www.ifa.hawaii.edu/~mullis/nep3d.html; A high-resolution color postscript version of the full paper is available at http://www.ifa.hawaii.edu/~mullis/papers/nepsc.ps.g

    X-ray Properties of the Abell 644 Cluster of Galaxies

    Get PDF
    We use new ASCA observations and archival ROSAT Position Sensitive Proportional Counter (PSPC) data to determine the X-ray spectral properties of the intracluster gas in Abell 644. From the overall spectrum, we determine the average gas temperature to be 8.64 (+0.67,-0.56) keV, and an abundance of 0.32 (+/-0.04) Z⊙Z_{\odot}. The global ASCA and ROSAT spectra imply a cooling rate of 214 (+100,-91) M⊙M_{\odot} yr−1^{-1}. The PSPC X-ray surface brightness profile and the ASCA data suggest a somewhat higher cooling rate. We determine the gravitational mass and gas mass as a function of radius. The total gravitating mass within 1.2 Mpc is 6.2×10146.2\times10^{14} M⊙M_{\odot}, of which 20% is in the form of hot gas. There is a region of elevated temperature 1.5-5 arcmin to the west of the cluster center. The south-southwest region of the cluster also shows excess emission in the ROSAT PSPC X-ray image, aligned with the major axis of the optical cD galaxy in the center of the cluster. We argue that the cluster is undergoing or has recently undergone a minor merger. The combination of a fairly strong cooling flow and evidence for a merger make this cluster an interesting case to test the disruption of cooling flow in mergers.Comment: 26 pages LaTeX including 9 eps figures + 4 pages LaTeX tables (landscape); accepted to ApJ, uses aaspp
    • …
    corecore